Dating by canim az

For each blogger, metadata is present, including the blogger s self-provided gender, age, industry and astrological sign. The creators themselves used it for various classification tasks, including gender recognition (Koppel et al. The men, on the other hand, seem to be more interested in computers, leading to important content words like software and game, and correspondingly more determiners and prepositions.One gets the impression that gender recognition is more sociological than linguistic, showing what women and men were blogging about back in A later study (Goswami et al.For all techniques and features, we ran the same 5-fold cross-validation experiments in order to determine how well they could be used to distinguish between male and female authors of tweets.In the following sections, we first present some previous work on gender recognition (Section 2). Currently the field is getting an impulse for further development now that vast data sets of user generated data is becoming available. (2012) show that authorship recognition is also possible (to some degree) if the number of candidate authors is as high as 100,000 (as compared to the usually less than ten in traditional studies).The resource would become even more useful if we could deduce complete and correct metadata from the various available information sources, such as the provided metadata, user relations, profile photos, and the text of the tweets.In this paper, we start modestly, by attempting to derive just the gender of the authors 1 automatically, purely on the basis of the content of their tweets, using author profiling techniques.In this case, the Twitter profiles of the authors are available, but these consist of freeform text rather than fixed information fields.And, obviously, it is unknown to which degree the information that is present is true.

dating by canim az-67

A group which is very active in studying gender recognition (among other traits) on the basis of text is that around Moshe Koppel. 2002) they report gender recognition on formal written texts taken from the British National Corpus (and also give a good overview of previous work), reaching about 80% correct attributions using function words and parts of speech.

The general quality of the assignment is unknown, but in the (for this purpose) rather unrepresentative sample of users we considered for our own gender assignment corpus (see below), we find that about 44% of the users are assigned a gender, which is correct in about 87% of the cases.

Another system that predicts the gender for Dutch Twitter users is Tweet Genie ( that one can provide with a Twitter user name, after which the gender and age are estimated, based on the user s last 200 tweets.

For our experiment, we selected 600 authors for whom we were able to determine with a high degree of certainty a) that they were human individuals and b) what gender they were.

We then experimented with several author profiling techniques, namely Support Vector Regression (as provided by LIBSVM; (Chang and Lin 2011)), Linguistic Profiling (LP; (van Halteren 2004)), and Ti MBL (Daelemans et al.

Leave a Reply